Photonic Crystals for Enhancing Thermophotovoltaic Energy Conversion
نویسندگان
چکیده
Thermophotovoltaics (TPV) converts the radiant energy of a thermal source into electrical energy using photovoltaic cells. TPV has a number of attractive features, including: fuel versatility (nuclear, fossil, solar, etc.), quiet operation, low maintenance, low emissions, light weight, high power density, modularity, and possibility for cogeneration of heat and electricity. Some of these features are highly attractive for military applications (Navy and Army). TPV could also be used for distributed power and automotive applications wherever fuel cells, microturbines, or cogeneration are presently being considered if the efficiencies could be raised to around 30%. This proposal primarily examine approaches to improving the radiative efficiency. The ideal irradiance for the PV cell is monochromatic illumination at the bandgap. The photonic crystal approach allows for the tailoring of thermal emission spectral bandwidth
منابع مشابه
Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification.
Selective thermal emission in a useful range of energies from a material operating at high temperatures is required for effective solar thermophotovoltaic energy conversion. Three-dimensional metallic photonic crystals can exhibit spectral emissivity that is modified compared with the emissivity of unstructured metals, resulting in an emission spectrum useful for solar thermophotovoltaics. Howe...
متن کاملThermophotovoltaic power conversion systems: current performance and future potential
Thermophotovoltaic (TPV) systems offer a unique, solid-state approach to converting heat into electricity based on thermal radiation. TPV is particularly suitable for certain classes of power generation applications that are not well served by standard engines, such as long, remote missions where repairs are difficult, and portable generation where space and weight are at a premium. While stand...
متن کاملFabrication of an Omnidirectional 2D Photonic Crystal Emitter for Thermophotovoltaics
In a thermophotovoltaic (TPV) system, a heat source brings an emitter to incandescence and the spectrally confined thermal radiation is converted to electricity by a low-bandgap photovoltaic (PV) cell. Efficiency is dominated by the emitter’s ratio of in-band emissivity (convertible by the PV cell) to out-of-band emissivity (inconvertible). Two-dimensional photonic crystals (PhCs) offer high in...
متن کاملEnhancing selectivity of infrared emitters through quality-factor matching
It has recently been proposed that designing selective emitters with photonic crystals (PhCs) or plasmonic metamaterials can suppress low-energy photon emission, while enhancing higher-energy photon emission. Here, we will consider multiple approaches to designing and fabricating nanophotonic structures concentrating infrared thermal radiation at energies above a critical threshold. These are b...
متن کاملOne –Dimensional Si/SiO2 Photonic Crystals Filter for Thermophotovoltaic Applications
In this paper, a one dimensional Si/SiO2 photonic crystals (1D-PhCs) is optimized for potential application as thermophotovoltaic (TPV) optical filter. The performance of the proposed structure, 1D eightlayer Si/SiO2 of thermophotovoltaic system, is studied. The effect of the thickness of layers, incidence angle and number of periods on the spectral reflectance has been investigated by rigorous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003